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Abstract

This report uses Radial Basis Function (RBF) based methods to discretise stan-
dard Partial Differential Equations (PDEs), aiming to assess their performance com-
pared to the analytical results and alternative discretisation methods. All methods
used are based on either global or local support RBF interpolation. They include
Kansa’s method, the Radial Basis Function-Finite Difference method (RBF-FD)
and the Local Radial Basis Function Collocation method (LRBFCM). Schemes are
created to solve linear equations such as the Poisson, heat and wave equations and
the non linear Burgers’ equation. Time derivatives are discretised using either an
explicit or implicit scheme, and least squares solvers are used to provide results for
the implicitly discretised Burgers’ equation. Results provided for the linear equa-
tions are compared to analytical solutions and show the accuracy and versatility of
the method, which is mesh free. The explicit methods for the heat and wave equa-
tion are shown to be accurate provided an appropriately small time step is taken.
The implicit methods give less accurate results, due to issues with ill-conditioned
matrices, but are more stable for larger time steps. Solutions to the Burgers’ equa-
tion give low errors, € = Lo = 0.0011, and a comparable performance of the RBF
based methods to other numerical methods. The implicit time discretisation deals
with the stabilisation of the solution to the Burgers’ equation at high Re num-
bers. Applications are provided in the field of image reconstruction where surfaces
are reconstructed using a solution to the Poisson equation provided through the
global Kansa RBF scheme. A comparison of this method to RBF implicits and
the Hermite RBF method shows it provides higher accuracy results coupled with
computational inefficiencies. The RBF methods shown are versatile and provide
accurate results for all PDEs examined in this report.
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1 Introduction

Differential equations are the basis for understanding a wide range of physical phenomena
arising in fluid mechanics, geosciences, biology or economics amongst other disciplines.
They play an important role in virtually modelling every physical and biological inter-
action of the real world. However, many differential equations are not directly solvable,
as they do not have a closed-form expression, and their solution is approximated by
numerical solutions instead.

The numerical solution of differential equations has been studied for over a century.
The first method proposed was the finite difference (FD) method, introduced by Richard-
son (1911), who used Taylor series expansions to approximate the derivatives. Generally,
the method is easy to implement and has been a dominant methodology ever since. Pseu-
dospectral methods were introduced later on, in the early 1970’s for simple geometries
by Gary (1970), which offered higher accuracy and computational efficiency. Moreover,
Kansa (1990) was the first to use radial basis functions (RBFs) as a tool to discretise
spatial derivatives in PDEs, which offered a novel approach to their numerical solution.
The method can be seen as a generalised pseudospectral method which offered geometric
freedom and node ordering independence whilst keeping spectral accuracy.

Ideally, the approximation to the solution of a PDE should be high-order accurate,
computationally efficient, flexible regarding the geometry and easily implemented. Never-
theless, commonly used methods fail to fulfil all the mentioned requirements. Finite differ-
ence methods can be high-order accurate, but they require a structured grid. Pseuspectral
(PS) methods have shown to be even more accurate but the method suffers severe geo-
metric limitations and depends on regular node layouts. In the Fourier case, they even
require periodic boundary conditions. Other methods such as finite element methods are
remarkably flexible but it is hard to achieve high accuracy and mesh generation also be-
comes increasingly difficult at higher spatial dimensions. Radial basis functions depend
on the Euclidian distance from a centre point x;: ¢(||x — x;||), and a shape factor, ¢, is
generally included. RBF's do not require a mesh or grid to discretise derivatives, which
allows for geometric flexibility and local refinements where required, hence the compu-
tational cost does not depend on the complexity of the geometry. Moreover, working
in higher dimensions does not increase the difficulty of the method, as opposed to finite
element methods, which results in an ease of implementation. Despite the high accu-
racy of the method described by Kansa, computational cost and the scalability to large
computer systems remained lingering concerns [Fornberg & Flyer (2015)]. Nevertheless,
different methods using RBFs have been explored and it has been recently discovered
that using RBFs for generalised FD methods could offer the ideal accurate, cost effec-
tive and flexible solution to the numerical solution of differential equations [Tolstykh &
Shirobokov (2003)]. RBF-FD methods offer high computational speeds, high accuracy
levels compared to PS and Kansa’s method, and opportunities for adaptive refinement
and large-scale parallel computing. The use of RBF's for the solution of differential equa-
tions has proven to be highly successful against other approaches, demonstrating high
feasibility and cost advantages.

For this reason, this report explores the use of radial basis functions as a tool to
discretise spatial derivatives and solve different partial differential equations for various
applications. The research considers different RBF schemes, such as the global Kansa
RBF method, a local RBF method, the Hermite RBF method and the RBF-FD method,
as well as different time scheme discretisations.
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1.1 Previous work

Radial Basis Functions are radial functions used for multivariate interpolation, where
data site inputs are used to create a univariate function, f : R — R [Fornberg & Flyer
(2015)]. The first use of RBFs was by Hardy (1971) who used multiquadrics (MQ) to
represent 2D topographic maps using scattered data and is related to kriging which is
based on the work from Krige (1951). Following the discovery and use of multiquadrics
and, subsequently, Thin Plate Splines (TPS) by Duchon (1977), RBFs became prominent
in applications for scattered data interpolation (mesh free). Developments in compactly
supported RBF's were done by Wendland (1995), to deal with ill-conditioned interpolation
systems.

Conventionally, mesh-based techniques such as the Finite Element method [Le Méhauté
(1990)] and Finite Difference methods [Xu & Lu (1988)] were used for image reconstruc-
tion. However, RBF implicit surface reconstruction was firstly proposed by Carr et al.
(1997) for medical images. Initially, the size of the problem treated was constrained
to computational power, however, this issue was overcome with advancing technology.
Kazhdan et al. (2006) proposed solving the Poisson equation as a solution for surface
reconstruction which creates a smooth watertight surface and has noise prevention ad-
vantages. Another approach for surface reconstruction is studied by Macédo et al. (2011),
where Hermite data is used for interpolation.

Additionally, RBFs were first used by Kansa (1990) to create a discretisation scheme
for the spatial derivatives in a PDE. The method is called Kansa RBF collocation method.
It was used extensively to discretise and solve PDEs such as the linear advection-diffusion
equation and the elliptic Poisson equation by the original work from Kansa (1990). Fol-
lowing the work from Kansa (1990), a local Radial Basis Function-Generated Finite
Difference (RBF-FD) method was developed and introduced by Tolstykh & Shirobokov
(2003) and Shu & Yeo (2003). A multitude of applications followed including solving
PDEs on curved surfaces and over 3D bodies [Piret (2012)]; modelling turbulent vortical
flame propagation by Kansa et al. (2009); radiative transfer by Kindelan et al. (2010);
and finally, extensive use in the fluid mechanics field such as in simulations of water flow
by Wong et al. (1998) or the solution of the Navier-Stokes equations by Demirkaya et al.
(2008). RBF derived methods were also used to discretise non linear PDEs including the
numerical solution of the Burgers’ equation in 1D by Khater et al. (2008) and Ali et al.
(2011), and 2D by Ali & Haq (2009) and Sarler et al. (2012).

1.2 Aims and Objectives

The aim of this group industrial project is to apply and assess the performance of different
RBF based methods, such as Kansa, RBF-FD, LRBFCM or Hermite, to solve partial
differential equations for different applications. The applications detailed in this research
include the use of RBFs on image processing, the solution of linear PDEs, such as the
Poisson, heat and wave equation, and non linear PDEs, such as the Burgers’ equation,
all using RBF based discretisation methods.

For the application to linear PDEs the aim is to solve the Poisson, heat and wave
equation for two dimensional cases. The accuracy is then assessed against analytical
solutions. For the equations that have a time derivative (heat and wave in this case)
both explicit and implicit methods are tested for the approximation in time.

Moreover, radial basis functions are employed to create implicit functions for surface
reconstruction in three different ways: RBF implicits, Hermite Radial Basis Function
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(HRBF) implicits and Poisson Surface Reconstruction. Three approaches are designed
to be compared in multiple experiments both in 2D and 3D regarding their accuracy and
computational performance. Some real life applications are demonstrated using different
techniques that show their performances and feasibilities.

Regarding the non linear PDEs application, the aim is to solve the 1D and 2D Burgers’
equation numerically through five different discretisation schemes that use RBF methods
(Kansa, RBF-FD and LRBFCM) to discretise spatial derivatives and either an Euler
explicit or implicit discretisation scheme for the time derivatives. Therefore, the main
objectives of the section are firstly, to present a numerical solution of both the 1D and 2D
Burgers’ equations; secondly to perform convergence studies on all the methods; thirdly
to assess the performance of RBFs in comparison to each other, the analytical solution
and to different methods and schemes from prior research on the Burgers’ equation; and
lastly, to study the performance and convergence of different non linear least squares
methods algorithms for the implicit time schemes used to solve the PDE.

2 Methodology

2.1 Radial Basis Functions

Radial Basis Functions are functions used to map multivariate scattered data from a
specific amount of dimensions in Euclidean space to a function ® : R* — R. The
function is called radial if there exists a univariate function ¢ : [0, 00) — R such that the
following relationship holds true [Fasshauer (2007)]:

O(x) = o(r), r= |l (1)

where ||-|| is the Euclidean norm, ¢(r) is the univariate basic function which generates
the basis functions ®(||x — x;||) by shifting to different centres x; € R". Hence all basis
functions O( ||z — «;||) are radially symmetric about their centres x; and are called Radial
Basis Functions.

Radial basis functions are used to interpolate large scattered data sets, hence they do
not require a mesh to be fitted. They are better suited to deal with complex geometries
and large sets of data in comparison to other functions such as univariate polynomials
[Fasshauer (2007)]. A univariate basic function ¢(r) is invariant to complexities added
by additional dimensions in the original data sites. This allows for a large number of
dimensions to be used, as the interpolation with RBFs does not increase in complexity
with the dimension number. The following are common basic function choices used to
form the RBF's:

e Hardy Multiquadrics (MQ) [Hardy (1971)]: ¢(r) = Vr2 + 2
e Gaussian: ¢(r) = exp(—c*r?)
e Thin Plate Splines (TPS) [Duchon (1977)]: ¢(r) = r*"log(r)

where c is the shape parameter and n an integer depicting the order of the TPS. For this
work it was set to ¢ = 1/5/N, where N is the number of data sites used, following a brief
numerical testing. For all applications presented in this report, the RBF's chosen are the
Hardy Multiquadrics (MQ) as they have proven to be the most accurate for scattered
data interpolation by Franke (1982). Global and local support RBFs are presented in the
sections to follow, in the context of interpolation.

Michael, Tugores-Bonilla, Zeng, Moore, Boissier 10
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2.1.1 Global Support Radial Basis Functions

Interpolation is the fitting of a continuous function, f : R — R to given data values s(x;)
at given data sites x;, where x; € R", such that f(x;) = s(«;). This is called multivariate
data interpolation. Data can be scattered, as a mesh is not required to explicitly define
basic functions. The function can provide required information by being evaluated at
various locations in the domain, not involving the input points. This problem is solved
by assuming a linear combination of radial basis functions to the interpolant, f:

f(x) ZZ/\@(H%—%II% x c R (2)

=1

where x is the free variable of positions for the function to be evaluated at, a; are the
given data sites with a known function value, i = 1,.... N, A\; = [A1,..., An] are scalar
coefficients facilitating the function fit and ¢(||x — ;||) is the radial basis function.

The assumption from Eqn. (2) is used to form a system of linear equations to be
solved for the coefficients, \;:

O(ley —a1|)  oller —@al]) ... o(llr —@nl]) | [ s(z1)
O(lee —xil])  o(llwe —xall) .. O(llwe —n|) | [ A2 | | s(@2)

: : : =1 . (3)
O(ley — i) o(lley —2:l) ... o(ley —znl)/ \Av s(ey)

where s(x;) are the known values of the function at the input data sites. This linear
system, A\ = s, has a solution if A is non-singular and the problem is well posed. Based
on the Mairhuber-Curtis theorem [Fasshauer (2007)], an interpolation problem does not
ensure a solution if a predefined function is chosen for the scattered data set. RBFs are
inherently undefined (Eqn. (1)), since the basic function generates radial basis functions
by shifting centres. Additionally, with the use of multiquadrics (MQ), the RBF matrix
is invertible as proven by Micchelli (1984), and unisolvency is ensured.

Linear systems can be directly solved if the matrix, A, is well conditioned and small.
However with globally supported RBF interpolation problems, such as the previously
imposed problem, the RBF matrix is usually densely populated and has a high condition
number due to the large number of data site inputs («;). Results are prone to error
if such a system is directly solved. Options to minimise errors include decomposing
the matrix through singular value decomposition, LU decomposition amongst others, or
using iterative solvers such as the conjugate gradient method or the generalised minimum
residual method (both available in MATLAB through pcg and gmres).

An example of scattered data interpolation for surface reconstruction and morphing
is presented. A function is created which is expressed such that at the surface its value
is f = 0. Known points on the surface are provided and interpolation gives information
at points not included in the input set. Hence, it can be used to reconstruct a surface or
3D object as done by Carr et al. (2001) or create a morphing sequence between an initial
and final surface as done by Turk & O’Brien (1999).

Input data sites (x;) include points on the surface to be reconstructed and normal
to the points both inside and outside of the surface. An example in 2D is shown in Fig.
1. The data values used at these points are s(x;) = 0 for points that lie on the surface,
s(x;) = —1 inside the surface and s(x;) = 1 outside the surface. The additional points
that do not lie on the surface to be reconstructed are introduced to create a gradient in the
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function, such that a surface rather than a volume is created. Moreover, the additional
points are to avoid the trivial solution of the function being zero in the whole domain
(f(z) = 0).

The linear system in Eqn. (3) is subsequently solved using the aforementioned input
data sites(s(a;)) and values. Eqn. (2) is then used to form the univariate function and
can be used to evaluate the function values at different points in the domain. Points that
have a value of zero (s(x) = 0) lie on the surface which can be reconstructed.

Multivariate interpolation is additionally achieved through the use of RBF's to create
a morphing sequence between two surfaces. An example of 2D morphing between a circle
and an ellipse can be seen in Fig. 1. Morphing of a surface is achieved using the same
method with an additional time coordinate. The first surface is placed at t = t; and
the final surface at ¢ = t5. The additional coordinate increases the spatial dimensions
of the input data sites (x; € R®). Radial basis functions allow for interpolation in
multi-dimensional spaces without an increase in complexity. The implicit function can
be evaluated at different time steps to form the morphing sequence (Fig. 1).

Figure 1: (a) Function values used to generate the implicit function that describes the whole surface.
Points not lying on the surface are equidistant along the unit normal at each point (b) Morphing between
a 2D ellipse and a circle.

2.1.2 Local Support Radial Basis Functions

Developments in compactly supported radial basis functions were made to improve in-
terpolation results, where inaccuracies occur due to the high condition number of the
densely populated RBF matrices [Wendland (1995)]. Compact support introduces sparse
matrices that result in linear systems (Eqn. (3)) which are faster to solve and provide,
in specific cases, more accurate results.

The RBF matrix is made sparse through scaling of the basic function used, ¢(r), by
setting r € [0, €], the cut off radius being r = e. This reduces the neighbourhood consid-
ered for each point in the domain, x, from all data sites, ; to the nearest, k, neighbours,
where it is assumed that & < N (the total number of points in the domain). In order
to obtain the nearest neighbours, k, at each point, ; = x4, ..., x N, a k-dimensional tree
algorithm has been used which firstly, rearranges the node information in O(N log N)
operations, and secondly a further O(N log N) operations find a specified number of
nearest neighbours to all nodes [Fornberg & Flyer (2015)]. For this, the object function,
knnsearch in MATLAB has been used. Interpolation of scattered data is achieved by
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solving the same linear system (as in Eqn. (3)) but with a sparse matrix:

oz — ) o([ler — ) 0
Ollzz —zl]) o[l — 22l]) o[22 — 3]])

0 ¢(llzs — )

olln 1 — o)
olllon —anal) ol — el
(4)
where for this example all data sites lie on a uniform grid and x; € R! for k = 3
neighbouring points. The sparsity of the matrix depends on how the points are ordered
in the physical domain.

Alternative functions can be used to interpolate such as Wendland’s compactly sup-
ported functions which have continuity at the edge of the compact support [Wendland
(1995)]. However for the purposes of this study, basic MQ functions are used along with
local support to develop finite difference weights for the RBF-FD method (Section 2.2.2)
and as the basis for the Local RBF Collocation Method (LRBFCM) introduced in Section
2.2.3.

2.2 RBFs for PDEs

In order to solve linear PDEs two methods were used: Kansa’s method and RBF Finite
Difference (RBF-FD). For non linear PDEs, the Local Radial Basis Function Collocation
Method (LRBFCM) has also been used.

2.2.1 Kansa’s Method

For Kansa’s method the function value at a point @ is approximated by using Eqn. (2).
This expression can be differentiated to give:

N

0"u(x) o
oo = 2 Aol — i)} (5)

i=1

and therefore this approximation can be applied to solve PDEs. The linear PDE:
L{u(z)} = f(z), =e (6)
with boundary conditions:
Glu(x)} = g(x), x €N (7)

is considered, where L and G represent differential operators and f(x) and g(x) are func-
tions of @, for the domain () and the boundary (952) respectively. The approximation
from Eqn. (5) can be applied to points in the domain and equated to f(x) and g(x)
respectively in order to find the coefficients, \; [Franke & Schaback (1998)]. This gives:

Z AiLAg(|[zm — il)} = f(2m) (8)
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and
Z NG|z — =)} = g(=;) (9)

where «,, represents a point in the domain and x; a point on the boundary. Applying
this to the whole domain of points gives the matrix equation:

f(.’B1> L((I)11> L(@u) L((I)lN) /\1

f(x2) L(®y) L(®Dy) L(®Day) A2

faw) | =] L@w)  L®w) o L) || A (10)
g(zc(m+1)) G(‘I)(m+1)1) G(‘I)(m+1)2) G(@(m+1)N> A(m+1)

g(ax) C@x)  G(Oxs) ..  G(Byy) An

for a domain of NV total points and m internal points, where ®;; represents ¢(||z; — x;||).
The linear system can then be solved to find the unknown coefficients, \;. The function
values for different points can be found by substituting back into Eqn. (2) [Bernal (2010)].

There are some issues with the Kansa method. When using this method with globally
supported RBF's, the matrices created are very dense, making them numerically inefficient
to work with. Additionally these matrices generally have a high condition number which
can affect the accuracy of the solution when solving the matrices of equations. A method
based on locally supported RBFs is needed to solve this issue. Errors can also arise when
using Kansa’s method through taking derivatives of the interpolation matrix. In order
to solve this issue an indirect RBF approach could be taken. In this method the RBFs
are used to represent the highest order derivative in the problem (for example the second
derivative, %) and then it is integrated to find the lower order derivatives, as opposed
to the direct method used by Kansa where the RBFs are used to represent the function
u and subsequently get differentiated. This has been found to give more accurate results,
as integration is a smoothing operation and therefore the approximating functions are
smoother [Mai-Duy & Tanner (2005)]. However, this method is very computationally
demanding. Use of a local RBF based Finite Difference method would also solve this
issue, as well as being less computationally demanding. As this method is based on locally
supported RBFs it would also create less dense and ill-conditioned matrices compared to
the global Kansa method.

2.2.2 RBF Finite Difference

In the Finite Difference method the differential operator at a point is approximated by a
weighted sum of the function values at other points in the domain. For this work a local
FD method is employed, with a stencil of k£ nearest neighbours being used, as discussed in
Section 2.1.2. For a PDE as described in Equations (6) and (7) the differential operation
L at point x; can be approximated as:

L{u;} = ijuj (11)

where u; is the function value at point 7, w are the stencil weights and k is the number
of points in the stencil. The RBF approximation, as given in Eqn. (5), can be applied to
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L{u;} and u;. This gives:

Uy Dy Dy . Dy A1
Uz _ Dy Dyy ... Dy A2 (12)
Uy (I)kl (I)kg (I)kk )\k
and
A1
A2
Ak
which can be written as
u= A\ (14)
and
L{u;} = bA (15)

respectively, where A is the k x k matrix (where k is the number of points in the stencil),
b is the 1 x k vector and A is the k x 1 column vector of weights. From this A can be
eliminated in order to find the stencil weights in terms of A and b:

w=bA"". (16)

This process is repeated to find the stencil weights for all points in the domain. From
this, a global weight matrix, W, is constructed with the stencil weights in the appropriate
places in each row giving the equation:

g(xn)

[Flyer et al. (2014)]. The weights for boundary nodes are dealt with using the same
method. For Dirichlet boundary conditions a weight of 1 in the appropriate place (to
give u; = g(x;)) can be used. For Neumann boundary conditions the appropriate Finite
Difference scheme would need to be used. The system of equations as given in Eqn. (17)
can then solved to find function values u. For N points in the domain, W will be a N x N
matrix but will only have k& non-zero values in each row, making it a sparse matrix. The
appropriate shape factor, ¢ = \/5/N, is chosen (as discussed in Section 2.1).

2.2.3 Local Radial Basis Function Collocation Method

The Local Radial Basis Function Collocation Method (LRBFCM) was developed by Sarler
& Vertnik (2006) to solve the heat diffusion equation. This local method for solving
PDEs is based on interpolation (collocation), using RBFs, of overlapping sub-domains.
Similar to compact support RBFs and the RBF-FD method, it aims to mitigate densely
populated, ill-conditioned matrices resulting from globally supported RBF matrices (Eqn.
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(2)). However, both when compactly supported RBFs or the RBF-FD method are used,
the linear system solved includes large sparse matrices (Eqn. (4), (17)). When using
LRBFCM the interpolation matrix is much smaller in size. The function values are
approximated by:

k
u(ie) =Y hio([ @ — ), ;T € Q¢ 00 (18)
i=1

where subscript j denotes the sub-domain (local domain of influence) being solved. The
central nodes for each sub domain used do not lie on the boundary. The derivatives of the
PDE are approximated using Kansa’s method (Section 2.2.1) which is applied at multiple
smaller systems of k points. Each local domain includes & = 3 neighbouring points for a
1D domain and k = 5 points for a 2D domain, resulting in a linear interpolation system
which is solved independently for every sub-domain:

ju = jAj>\ (19)

3 Applications

Different applications have been considered to the solution of different partial differential
equations using and the RBF methods described in the section above. Applications in-
clude the solution of linear PDEs, surface reconstruction problems and non linear solvers.

3.1 Linear PDEs

The methods described in Section 2.2 were used to solve elliptic, hyperbolic and parabolic
partial differential equations, namely the Poisson equation (elliptic), the heat equation
(parabolic) and the wave equation (hyperbolic). Initially the Poisson equation:

Viu(z) = f(x) €0 (20)
subject to Dirichlet boundary conditions:
u(x) =g(x) x€0N (21)

where f(x) and g(x) are functions of  and Q and 02 are the domain and boundaries
respectively. This was solved in 2D using both the Kansa and RBF-FD methods (Section
2.2). The heat equation in two dimensions is given as:

ou 0%u  0*u
o = (a— ! W) 22

where « is the diffusivity of the medium. In comparison to the Poisson equation this
equation has the additional dimension of time. An explicit Euler scheme could be used
for the time approximation, i.e:

n+1 n

Ou  u""™ —u

o At
where u" is the function value at time-step n and At is the length of the time step. This
can be used in combination with an RBF based discretisation, with the RBFs being used

(23)
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to approximate the double derivatives of u with respect to x and y using Eqn. (5). This
gives:

N
ut = 4 Ata Y AV (l@ — ). (24)
i=1
where V? = 86—;2 + 59—:2. By using RBFs to approximate the function values, u", the
coefficients, A can be solved for (ie. solving Eqn. (3)) and then used to approximate the
derivatives and find u"*! to update the time step. The process can then be repeated to
move forward in time as desired. When coding this the interpolation matrices for v and
V2u can be set up at the start of the code and a simple 'for’ loop used to solve for the
coefficients and update the time-step.

An implicit method was also tested, with the dimension of time being treated in the
same way as the spatial dimensions (ie. the 3"¢ coordinate). Kansa’s method or the
RBF-FD was then applied in the same way.

Following the same principle, the wave equation can be solved using an explicit Euler
scheme and both the Kansa and RBF-FD methods. The wave equation in two dimensions

is given as:
0%u Pu O%u
— =7 =+ (25)
ot? ox? = 0y?

where ¢ is the wave speed. The second time derivative can be approximated as follows:

Oy uwtt — 2 !

o A2 ’ (26)
Hence, the wave equation can be expressed as:
= oy — " 4 AP Z \V2(o(|l2 — a:]])) (27)
=1
N
82 , 0° 0?
Son (g - 1) @l - i) =0 (28)

=1
The solution process is as with solving the heat equation. An issue arises when computing
the solution at time step n = 1, as the stencil includes the term u™~!. However, using
the initial condition: u® = 0, it can be found that at this time step, u=! = u?.

3.2 Function Reconstruction

An edge segmentation technique is firstly introduced as preparation for the surface recon-
struction dataset. Two surface reconstruction methods, Poisson Surface Reconstruction
and Hermite RBF implicits, are explained in greater detail. Images are often noisy and
structurally complex. Extracting the key points to reconstruct the image can be helpful
to get the general layout of the image thus only essential information remains. To do
so, Canny edge detection is employed to remove the noise and thinning the edges to 1
pixel width in the image [Canny (1986)]. The multi-stage algorithm implemented for a
2D image is as follows:

1. Gaussian filter: Remove general background noise.

1 a2 442
Ga(z,y) = ——e 2! (29)

2mo?
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2. Sobel operator: Obtain the gradient changes and orientations in the x and y direc-
tions and sum up the two.

3.3 Methods for least squares minimisation for non linear
problems

Non linear least squares methods can be used to approximate a solution to non
linear PDEs. The least squares method consists of approximating a solution to an
overdetermined system by minimising the square deviations between the observed
results and the fitted value of the model. Non linear least squares approximate the
solution from a starting point x, which converges to a minimiser x* by successive
iterations, refining parameters which enforce a descending condition. It minimises
a continuous function ||f(x)||, for which the gradient f’ can be computed, to find:

z* = argming{F(x)} (30)

where:
m

1 1 1
F(a) = 5 S U@ = I @IP = 5@ f @) (31)
i=1
where m is the number of given functions. Non linear least squares methods aim to
find a local minimiser (z*) for F, an argument vector that gives a minimum value
of F inside a region, and thus enforces the descending condition:

F(z*) < F(x) for ||z —2*|| < o (32)

where ¢ is a small, positive number. For the variation of a function F in the direction
h, its Taylor expansion is given by:

Fo+h) = F(z)+ hTg + %hTHh+O(||h||3) (33)

where g is the gradient F’(z) and H is the Hessian (H = F"(x)). If ||h]| is suffi-
ciently small, the sufficient condition for a local minimiser is to assume that x* is a
stationary point and that F”(x) is positive definite. For each iteration towards the
local minimiser, the current error e, is defined as:

e =z — " (34)

where k denotes the current iteration. The aim of iterative descent methods is
to achieve fast convergence, where we distinguish between linear, Eqn. (35), and
quadratic convergence, Eqn. (36):

llexrall < allex]] (35)

llexs1ll = Ollex]?) (36)
In order to satisfy the descending condition, as presented in Eqn. (32), and find a
local minimiser (Eqn. (30)) in each step of the iteration, descent methods consist
of, firstly, finding a descent direction hy, and secondly, finding an appropriate step
length F'(x + ah) that gives an appropiate decrease in the F-value. The descent
direction h is defined for F' at x if h”TF'(z) < 0 [Madsen et al. (2004b0)]. For this
definition, different descending methods have been used for the solution of non
linear PDEs. The Burgers’ equation, in further sections, has been solved using
both the Gauss-Newton method and the Levenberg-Marquadt method.
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3.3.1 The Gauss-Newton Method

The Gauss-Newton (G-N) method is based on a linear approximation to the com-
ponents of cost function f, L(h). Inserting the Taylor expansion from Eqn. (33) in
the definition of the descending condition, Eqn. (32), it can be expressed as:

Flo+h) ~ L(h) = %Z(h)Tl(h) _ % FEARTITf 4 %hTJTJh (37)

where f = f(z) and J = J;;(z) = gi; is the Jacobian matrix. The Gauss-Newton

step, hgy, minimises L(h), and the gradient and the Hessian of L are defined as:
L'(h)y=J"f+J"Jh L'(h)=J"J (38)

where L'(0) = F'(x) and the second derivative L”(h) is symmetric and independent
of h. If the Jacobian has full rank, i.e. linearly independent columns, L”(h) is
positive definite, hence L(h) has a unique minimiser found by solving the following
equation:

(J" hgn = —J" (39)

T =+ ahgy,

where « is found by line search, as described in Madsen et al. (2004a). However,
for this study it has been considered that @ = 1 in all steps, as in the classical
Gauss-Newton method. The method has linear convergence at initial iterations,
although quadratic convergence is achieved at final stages of the iteration. The
Gauss-Newton algorithm is the following:

(a) Set an initial guess for the solution x = x,.

(b) Compute the Gauss Newton descent direction, (J*J)h,, = (—JTf), for a
given function, f and its Jacobian, J(x).

(c) Update the solution by stepping in the required direction Ze,, = = + hgp.
(d) Repeat until || f(2)|]e < €1 01 k = Epog.
In this work, the G-N algorithm is repeated until the function reaches ¢; = 1072,

or it reaches a maximum number of iterations k,,.,, = 200, to prevent it from an
infinite loop.

3.3.2 The Levenberg-Marquadt Method

The Levenberg-Marquadt (L-M) method is a hybrid descent method that suggests
a modification to the Gauss-Newton method by including a damping parameter p.
Thus, the function minimised becomes L(h) + suh’h, and the step hyy, is defined
as:

(JTT + pDhyy, = —J* f and 1 >0 (40)
where f = f(z) and J = J;;(z) = g%;, and I is the identity matrix. The damping

parameter constrains large steps and it has several effects: firstly, for positive values
of 41, the minimised matrix L;,,(h) is positive definite which ensures the step hy,, is
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in a descent direction. Secondly, for very large values of u, the step is approximated
as: 1
him = ——F'(z) (41)
1
which is, essentially, a step in the steepest descent direction, a method where the
descending condition is given by hgy = F'(x). The method is particularly useful
if the current iteration is far from the solution, but its convergence is linear and
often slow Madsen et al. (2004a). Thirdly, for small values of u, hy, > hg,, which
is desirable at final stages of the iteration when x is close to z*, so quadratic
convergence can be achieved. The Levenberg-Marquadt method is a hybrid method
combining the steepest descent and the Gauss-Newton method. It does not require
a specific line search as the damping parameter influences the size of the step.
The choice of the initial damping value is related to the size of elements in Dy =
J(x0)T J(x0), and is defined by i, = Tmaz;{D;}, where 7 is chosen by the user
[Madsen et al. (2004b)]. In this research, a value of 7 = 1072 is shown to be a good
approximation. The damping value changes through iterations and the updating is
controlled by the gain ratio:

F(z) — F(x + him)
L(0) = L(hum)

0= (42)

where the denominator is the gain predicted by the linear model and it is defined
as:

L(0) — L) = 515, (i — 9) (43)

where g = JT f. Both terms are positive, hence the denominator of the gain ratio
is positive. A large value of g indicates that L(hy,) is a good approximation to the
function, so u decreases, and the step gets closer to a G-N step. However, if p is
small or negative it means that L(hy,,) is a poor approximation, so the damping
value increases in the next step aiming to get closer to a steepest descent direction
[Madsen et al. (2004b)]. Regarding the stopping criteria, the iteration is stopped
when the function (J7 f) is sufficiently minimised, i.e. when it reaches a value of
€1 = 1075, or when the change of z becomes sufficiently small,

|Znew — 2] < ex([[]] + €2) (44)
where €, is set to 107°. Thus, the Levenberg-Marquadt algorithm is the following:

(a) Set an initial guess for the solution.
(b) Compute the Levenberg-Marquadt descent direction, (J¥ J+ul)hy, = (—=JT f).

(c) Stop iteration if the change in z is small, i.e. stopping condition described in
Eqn. (44).

(d) Update the solution by stepping in the required direction Z,e, = = + .

() If g is > 0, accept the new step and set p = p* maz (3,1 — (20— 1)3).
If pis < 0, compute p = pv and v = 2v.

(f) Repeat until ||g(z)||ec < €1 OF k = Kpga-

where v is a user-defined constant. In this work, the constant has been set to v = 2.
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3.4 Non linear PDEs: example using Burgers’ Equation

RBFs are proven to be a valuable tool for the discretisation of PDEs and least
square methods can be used to approximate a solution to non linear problems.
Therefore, the 1D and 2D Burgers equation [Bateman (1915)] is numerically solved
as a classical test case:

Oug |\ Oy Oup _ 1 [0 | Ot
ot * Ox YOy  Re |0z = Oy?
duy Ju, du, 1 [82% N aZuy}

ot " "or Ty T Re |02 T 0

(45)

where Re is the Reynolds number of the flow. The Burgers’ equation is a conser-
vation of momentum equation with a dissipative term arising due to fluid viscosity.
The schemes provided in this section are differentiated by different time and spatial
discretisations. The spatial discretisations have been conducted using the Global
Kansa, LRBFCM and RBF-FD methods, and time derivatives were discretised us-
ing both an explicit Euler scheme, which has been previously used by Sarler et al.
(2012), and an implicit Euler scheme, which is a novel approach conducted in this
work. The implicit scheme is used to ensure stability at Re > 100. As Sarler
et al. (2012) notes, for high Reynolds numbers, the flow becomes convective and
oscillations arise which increase rapidly, which Sarler et al. (2012) removed through
upwinding.

The initial conditions and Dirichlet boundary conditions used are taken from
the analytical solution of the Burgers’ equation. For the 1D Burgers’ equation
the analytical solution is given by Malfliet (1992), computed using the hyperbolic
tangent method:

u(z,t) = a+ %tanh(m —a) (46)

where « is a free parameter that arises from the analytical solution and bounds
the solution to a specific domain. The parameter is set to a« = 0.1 as in Khater
et al. (2008) and Ali et al. (2011). The coupled 2D Burgers’ equation is solved
analytically by Fletcher (1983) using the Hopf-Cole transformation. The analytical
solution is given by:

Ug (T, y, 1) = —3 - A : Ay — t)(Ee \7
uy(x,y,t) = —3 + 1 4y — t)(Le
y(@,y, 4 Al + exp((—4x + 4y t>(52€))]

3.4.1 Explicit Time Scheme and Global RBF

The velocity, u, is approximated in the whole domain using global RBF interpola-
tion (Section 2.1.1):

u(x, t) = Z Xid(||lz — 24])), R (48)
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where i = 1,..., N are the indices for all the points in the domain (§2) that are used
for the interpolation. The derivatives in space are approximated using Kansa’s
method (Section 2.2.1) and the time derivative of the Burgers’ equation is approxi-
mated using an Euler upwind scheme (explicit). The discretised Burgers’ equation
is given by:

n+l _ 2

N
— " ZA—M:C z|) = Z oz —zil]), ze€Q¢on

(49)
where At is the time step size, n is the time step index and the equation is solved
for the interior nodes of the domain only. The update formula for the velocity in
the inner domain is as follows:

u

u"t =y — Atu"BA + %C’)\ (50)

where B and C' are the RBF matrices formed using Kansa’s method. Starting with
the initial condition, given by Eqn. (46), the velocity is updated at every time
step giving the required solution for the inner domain (u"*' = u(z,t + At)). The
boundary conditions imposed are given by Eqn. (46) and the coefficients A for the
next time step are recalculated using the interpolated function (Eqn. (48)). The
ill-conditioned linear system is solved iteratively using the gmres solver available
in MATLAB.

3.4.2 Explicit Time Scheme and Local RBF

The Burgers’ equation has also been solved using the local RBF' collocation scheme
developed by Sarler & Vertnik (2006). The velocity field in the inner domain (;& €
Q ¢ 00) is approximated using the LRBFCM method (Eqn. (18)). Additionally,
the time derivative is discretised using an Euler upwind scheme (explicit) and the
spatial derivatives using a local Kansa method as described in Section 2.2.3. The
velocity is updated at every time step using the following formula:

=t — Atan B)\+}A% O\ (51)

where At is the time step and the ;B, ;C matrices are formulated using the Kansa
method as in Eqn. (50). The velocity is calculated at the central node of every over-
lapping sub-system for ever time iteration. The boundary conditions are imposed
following a time step. Points in each subsystem ;x; are scanned, and if they lie on
the boundary their velocity value is imposed using Eqn. (46). The local matrices
are smaller (k < N), hence the system is solved using lower-upper decomposition
(LU) through the backslash command in MATLAB [Mathworks (2020)].

3.4.3 Explicit Time Scheme and RBF-FD

The Burgers’ equation has also been solved using the a local RBF Finite Differ-
ence (RBF-FD) method. The discretisation weights for the spatial derivatives are
calculated as explained in Section 2.2.2, where the differential operators are approxi-
mated by a weighted sum of RBFs from the neighbouring points around it, obtained
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using a k-d tree algorithm. Specifically, using an object function knnsearch from
MATLAB’s statistics tool box. With N nodes accross the full domain, the RBF-FD
stencil is centered at each of these, and is extended over a total k nearest neighbours,
where it is assumed that k < N. Thus, the weights are solved by lower-upper(LU)
decomposition, through the backslash command in MATLAB. The time deriva-
tive is discretised using an Euler upwind scheme (explicit) and the final discretised
solution of the 1D Burgers’ equation is given by:

At
" = u" — At(u"(Woud)) + E(Wmug) (52)

where u is the velocity vector of the interior nodes of the domain (excluding the
boundary), ug is the velocity vector of all the points in the domain and W, and
W, are the global weight matrices for the first and second spatial derivatives re-
spectively, where the number of rows corresponds to the number of interior nodes
of the velocity vector. The inner domain velocity is updated at each time step, and
the initial condition and the boundary values are imposed, with ug being updated
from the analytical solution (Eqn. (46)).

The 2D Burgers’ equation (Eqn. (47)) has been similarly discretised and solved
for the y dimension in all three explicit schemes. This can be easily achieved since
no coupling is required (Eqn. (50), (51), (52)), as the solver uses previous time step
information to move forward in time.

3.4.4 Implicit Time Scheme and Global RBF

A global RBF approximation to the velocity (Eqn. (48)) and an Euler downwind
(implicit) time scheme is used along with Kansa’s method (Section 2.2.1) for the
spatial derivatives. The discretisation is as follows:

untt — ou 1 0%*u
At + unH% t=At(n+1) " Redax? t=At(n+1) (53)
N N N
> Nio(lle = wil) —um + A Ng(llr — ) D Aig @l —@il))
i—1 i—1 i—1 (54)

ALK P

~ Re & igsle—xl), weQ¢o

where the velocity is only calculated at the interior nodes of the domain. This leads
to a non linear system of equations to be solved iteratively:
At "
f(A) = AN+ At(AN) o (BA) — R—(C)\) —u (55)
e

where o is the Hadamard product, i.e. an element-wise multiplication. Additionally,
A is the RBF matrix used to approximate the velocity, and B, C are the radial basis
function matrices discretising the first and second spatial derivatives respectively.
The solution is approximated iteratively as discussed in Section 3.3, where solvers
require the computation of the Jacobian matrix, which is given by:

JA) = A+ At(Ao (BAT )4+ Bo(ANT ) — %c (56)
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%
where 1 = (1 11 ... 1)T. The non linear least squares method used is the
Gauss-Newton method, which is also used in Bahadir (2003). Thus, the iterative
algorithm is as follows:

(a) Start with an initial guess w™(z,t) = 3N No(||z — 24]), =€ Q, A= A" u?
(b) Use A and u"(x,t), x € Q¢ 0Qin f(A) and J(A).

(c) Apply the Gauss Newton method (Section 3.3) to find Aey -

(d) Use Apew to calculate u ™ = AN,y

(e) Impose boundary conditions to u"*(z,t), = € .

(f) Move to step 1 with a different initial guess u"(z,t) = u" ™ (x,t) until t = tcpq.
The 2D equation, Eqn. (47), requires a coupling of the system so that the Gauss-
Newton method can iteratively solve for the velocity in both directions at the same

time. The coupled system of equations produces the following function to be min-
imised, along with its Jacobian:

o= (8 () [G ) OIC D)
S[E AR D02 HE)

5
(o8- 6|6 6 1
+(§ g) (61 31) @) @) } (59)
(RGN E) )5

where matrix A is the RBF matrix used to approximate both u,, u, through Global

RBF interpolation (Section 2.1.1), matrices B,C are the RBF matrices used to

discretise aﬁ 9 ysing Kansa’s method respectively, and matrix D corresponds to

the discretised laplaman operator (5 ” 4 By 2) All matrices exclude point centres on
boundary points (i.e. rows < N), as boundary velocity values are imposed at each
time iteration.

3.4.5 Implicit Time Scheme and RBF-FD

The RBF-FD method has also been used to discretise the spatial derivatives com-
bined with an Euler downwind (implicit) time scheme. The discretisation is as

follows: o 5 L o
u"mt —u” 10U
_ 59
At T O li= At(n+1) " Redx?li At(n+1) (59)
A
W A (Wit ) = S (W) (60)
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where u is the velocity vector of the inner domain points (excluding the boundary),
ugq is the velocity vector of all the points in the domain and W,, W, are the global
weight matrices for the first spatial derivative and the second spatial derivative
respectively with rows corresponding to the inner domain velocity points. The
system of equations to be solved using non linear least squares algorithms detailed
in Section 3.3 is:

At

f(un—i-l) _ un+l — " + Atun—H o (qug—i-l) _ E(Wmcu?f—l) (61)
T = I+ A((Wous) T o)+ (Wyo (1T ) — Ay (62)

Re

where o is the Hadamard product, an element wise multiplication, and [ is the iden-
tity matrix. The system aims to minimise the velocity vector in the next time step,
u™t. It has been solved using both the Gauss-Newton and Levenberg-Marquadt
least squares methods, using the algorithms detailed in Section 3.3, and both meth-
ods are compared in Section 4.5.1. The boundary conditions are imposed at each
iteration to get the velocity in the whole domain u™™!. The iterative algorithm is
the following:

(a) Use the initial conditions to set a value for u”,ug, and an initial guess for
un—i—l ="

(b) Use the weights and velocity components in f(u™™') and J(u™").

(¢) Apply non linear least squares methods (Section 3.3) to find the velocity vector,
untt

(d) Update u™ = u™*!, and the boundaries at u&™ to match the next time step.

(e) Repeat from step 2 until ¢ = t.,4.

In order to solve the 2D Burgers’ equation, the velocity vector is solved for both
dimensions and the following function is minimised using the methods given in
Section 3.3:

= (D)= 8) (][0 ) (5]
e (S &) )]

" Re Ko ng) (Z@H)]‘(Z?

= 3 ) [(F ) EED (B ]G 0

T
+At 0 I UQ;H—l _1> o Wy 0 _ﬁ WL
I 0) \ugi* )\ 7 0 W, Re\ 0 W,
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where the matrices W,, W, correspond to the global weight matrices used to dis-
cretise the spatial derivatives with respect to the x and y direction respectively.
Wy is the global weight matrix used to discretise the Laplacian operator in the 2D
Burgers’ equation.

4 Results and Discussion

The metrics used to show accuracy of results are both the Ly and L., norms:

g1 = Ly(u) = [ —ully = /(1 — )2 + ... + (6, — up)?, (65)
g9 = Loo(u) = || — u|| = max |t — u|

where wu is the analytical value of the dependent variable in the domain and w is the

variable approximated through the relevant numerical scheme, n are the number of

points in the domain. The Ly norm provides the total error and the L., norm, the

maximum absolute error.

4.1 Linear PDEs: the Poisson Equation

Results to the Poisson Equation (Eqn. 20) depend on the interior function, f(x) and
boundary conditions. In order to assess the accuracy of the solution, an example
analytical solution is needed to be found. The case was considered for a [1 x 1]
domain with a function f(x) = 0 (Laplace’s Equation) and Dirichlet boundary
conditions u(0,y) = u(1l,y) = u(z,0) = 0 and u(z, 1) = g1(z), where:

T 0<z< %
= - - 66
Using the separation of variables technique, the solution can be found to be:
=~ 4si 2
u(z,y) = Z _Asin(nr/2) sin(nmx) sinh(nmy) (67)

2.2
“— n*m? sinh(n)
[Homer et al. (2017)]. This solution can be seen plotted in Fig. 2a. This is a
challenging test case as the boundary conditions mean the solution has a cusp, and
hence the derivative is not continuous. This can be seen in Fig. 2a as there is a
peak in the centre of the boundary.

4.1.1 Kansa’s Method

Kansa’s method was applied to solve the Poisson Equation subject to the boundary
conditions given in Section 4.1. In Kansa’s method a selection of points is needed to
construct the matrix equation as given in Eqn. 10. The weights, A\, were then found
through solving this system of equations using the MATLAB solver ml1divide.
These weights could then be used to find the function value at any point in the
domain (Eqn. (2)). Initially a regular grid of points (with spacing, Ax) was used
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to construct the matrix equation, and the weights found were used to calculate the
values for a 200 x 200 grid of points. Fig. 2 shows a plot of the solution obtained
from grid spacings of Az = 0.2 and Ax = 0.008, giving a grid of N = 36 and
N = 15876 points respectively. It can be seen that the higher resolution grid gives
a better representation of the sharp point of the solution, with the results from the
lower resolution grid smoothing out this point. Fig. 3a shows how the error, as
quantified by the L., norm, varies with number of grid points. It can be seen that
the error generally decreases as the number of points increases. However for the
last data point the error increases again. This may be because of the global Kansa
method, where the matrix of equations to be solved will get larger as the number
of points increases, making it generally less well conditioned. For example, the
matrix generated from N = 36 grid points has a condition number of 7.121 x 10*
whereas for the matrices generated from N = 10201 and N = 15876 grid points
the condition numbers are 3.54 x 10 and 7.02 x 10° respectively. Having an ill-
conditioned matrix can affect the accuracy of the MATLAB solver and is likely the
reason why there is an increase in error for the final data point. Therefore although
having a finer grid resolution will initially increase the accuracy of the solution, the
matrices to be solved will become larger and more ill-conditioned as /N increases,
becoming more computationally demanding to solve and eventually resulting in an
increase in error.

As the RBF approximation is based on the distance between points, not the
connectivity, randomly scattered points can also be used. Points in the domain,
with x and y coordinate values between 0 and 1, were generated through the rand
function in MATLAB. Points were also generated on the boundary through enforc-
ing one coordinate value to ensure it sat on a boundary and generating the other
coordinate through the rand function. These were done in the same proportion
of boundary vs. inner points as in the regularly spaced grid, with boundary points
evenly split between the 4 edges. The tests were run 5 times for each number of
points, with the maximum, minimum and mean L., norm shown in Fig. 3b. The
results follow the same pattern as those given by the grid of points, with the average
error again decreasing as N increases before increasing for the last data point. The
magnitude of results is generally comparable to those given by the evenly spaced
grid , however the results given from the grid are more accurate than the average
result from the random points. There is a spread of results for each number of
points, with the largest error bar being for the last data point. This shows that the
accuracy of the results can vary depending on the distribution of points. Overall
Kansa’s method is shown to be accurate when used with scattered points. How-
ever results obtained by an even grid of points vary less and are easier to compare,
therefore a even grid of points was used throughout the rest of the report.

4.1.2 RBF-FD

The RBF-FD method was also implemented to solve the Poisson equation. Initially
a stencil of the & = N/6 closest points was used, where N is the total number of
points in the domain. Whereas in the Kansa method once the weights are found
the function value for any point in the domain could be calculated, for the RBF-FD
method the function values are only found for the points used. This can be seen in
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(a) Analytical Solution

(b) N = 36 Points (6 x 6 Grid). (¢) N = 15876 Points (126 x 126 Grid).

Figure 2: Results for the Poisson Equation given by (a) Analytical solution (Equn. (67)) and (b), (c)
grids of different resolutions using Kansa’s method.
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(a) (b)

Figure 3: Graph of log(Lw) vs. log(y/total no. points) for (a) Evenly spaced grid (b) Scattered points
using Kansa’s method.
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Fig. 4. Fig. 5 shows how the L. norm varies with number of points. The error
generally decreases as N increases. The error is also smaller than for the results
obtained from Kansa’s method using the same number of points. One disadvantage
of this RBF-FD method is that solving Eqn. 16 for every stencil of points can take
a long computational time for a large number of points. In order to resolve this a
smaller number of points in the stencil can be used. Results for £ = N/50 were
obtained for comparison, which can also be seen in Fig. 5. The smaller stencil size
took less computational time and therefore could be implemented on high resolution
grids, however was less accurate than the larger stencil, especially for low resolution
grids. Overall this method can give accurate results and the issues of ill-conditioned
matrices can be avoided provided an appropriate stencil size for the resolution is

chosen.
o2 I
' = . z /1
05 \\'// oo R
04
4 o 0z .
(a) N =36 Points (6 x 6 Grid). (b) N = 10201 Points (101 x 101 Grid).

Figure 4: Results for the Poisson Equation given by grids of different resolutions using RBF-FD (Stencil
Size k = N/6)
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Figure 5: Graph of log(Ls) vs. log(v/total no. points) for the Poisson Equation using RBF-FD.

4.2 Linear PDEs: the Heat Equation

In order to assess the accuracy of the solutions obtained from the RBF approxi-
mation methods the results were compared to an analytical solution. A solution
was found for the situation where a 2D plate of size 2 x 2m with a = §m?/s is
initially heated to a temperature of 50°C' for y < 1 and 0°C' for y > 1. The plate
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has Dirichlet boundary conditions, with the edges held at 0°C. It can be shown
that the analytical solution for this situation at position (z,y) and time ¢ is:

_ 200 Z 1) )(1 COS( 2 )) Sin(mx)XSil’l(n—ﬂ-y)e*ﬂ'z(m2+n2)t/36

u(z, y,t)
m=1 n=1

(68)

[Daileda (2012)]. This was used to plot the solution for the 2 x 2m plate over a

time period of t.,q = 1s, as shown in Fig. 6.
50 50 50
40 40 40
30 30 30
25 25 25
0. 20 0. 20 08 20
04 10 04 10 04 10
DD 05 1 15 2 ¥ DD 0.5 1 15 2 ¥ DO 05 1 15 2 %

(a) t=0.05s (b) t=0.5s (c) t=1s

Figure 6: Analytical solution (Eqn. 68.) to the Heat Equation subject to given boundary and initial
conditions at 3 time steps.

4.2.1 Explicit Time Scheme

The explicit time scheme, as outlined in Section 3.1, was used to solve the heat
equation subject to initial and boundary conditions as given above. This was again
ran for a time period of 1s. Grids of spacing Ax = 0.1m and Az = 0.05m were
used with different time steps, with the result at t.,4 = 1s being compared to the
analytical solution. An example of the results obtained are shown in Fig. 7. It can
be seen that these visually appear to follow the analytical solution as given in Fig.
6. Fig. 8 shows how the error, represented using the L., norm, varies with time
step size. For large values of At (i.e. small values of t.,s/At) the method will not
be stable, with the L., norm being in the order of 10%°-103°. The error drastically
decreases once the time step is sufficiently small. There is a relatively small gain in
accuracy for reducing the time step beyond that point, as shown in Fig. 8b. It can
be seen that for the smaller resolution grid (Az = 0.05m) a smaller time step is
needed to ensure stability and an accurate solution, but more accurate results are
gained than the larger resolution grid once a sufficiently small time step is reached.
Overall it can be seen that this method will give accurate results, provided a small
enough time step to ensure stability for the grid size is used.

4.2.2 Implicit Time Scheme

The Heat Equation subject to these boundary and initial conditions was also solved
using an implicit scheme. For this the time was treated in the same way as the
spatial coordinates, so each point had coordinates of z,y and ¢t. While coding
this was conceptually simple, as the method used was the same as for the Poisson
Equation, issues arose due to the large number of points, as the spatial coordinates
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(a) t=0.05 (b) t=0.5 (c) t=1

Figure 7: Solution at 3 time steps for Ax = 0.05m and At = 0.005s, obtained through the explicit time
scheme
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Figure 8: Graph of log(Ls) vs. log(tenq/At) for grid spacing’s of Az = 0.1m and Az = 0.05m, obtained
through the explicit time scheme

are repeated for every At. Because of this attempts to use the Kansa method were
unsuccessful, as the matrices created were very ill-conditioned and could not be
solved accurately. Therefore a RBF-FD method was used, with a stencil size of
k = N/6 where N is the total number of points. Additionally, the gmres solver in
Matlab was used to solve the matrix equations as this could deal with ill-conditioned
matrices better than the m1divide function previously used. A larger grid spacing
of Az = 0.2m was also used in order to reduce the matrix sizes. Fig. 9a shows how
the error, L., varies with changing time step while Fig. 9b shows the result given
by a time step of At = 0.2s. It can be seen that the implicit time scheme does
not have the same issues in stability as the explicit time scheme, and can produce
accurate results from relatively large time steps. It can also be seen that the results
were ran over a smaller range of time steps than the explicit scheme and the error
increases with reducing time step size. This is again because of issues with the
matrices being dealt with being very large and increasingly more ill-conditioned,
making them computationally expensive to solve and more likely to introduce errors
in the results. For the time steps At = 0.02s and At = 0.2s the A’ Matrix (as
given by Eqn. 14) for the final stencil computed has very high condition numbers
of 1.7 x 10% and 7.7 x 1033 respectively.

Overall the main issue with this method is the large matrix sizes needed to
represent the points in space at every time step, and the conditioning problems
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Figure 9: (a) Graph of log(Ls) vs. log(tena/At) for Az = 0.2m and (b) Results at tepg = 1s with
At = 0.2s, obtained using an implicit time scheme.

these create. It has been shown to produce relatively accurate results for large time
steps that would result in instability if using the explicit time scheme. However
if using a sufficiently small time step the explicit scheme will give more accurate
solutions for this case.

4.3 Linear PDEs: the Wave Equation

An example problem governed by the wave equation is set up such that a 2D plate
with dimensions 2 x 2m, with a wave speed ¢ = 6m/s has Dirichlet boundary
conditions, with the edges held at zero, and an initial deformation u(z,y,0) =
xy(2—x)(2—y). It can be shown through separation of variables that the analytical
solution to this problem, at position (x,y) and time ¢ is:

256 ) 14+ (=)™ (1 + (=1)*!
u(z,y,t) ZZSIH —x sm(ngy)(( (=1 mi)”iz:” (=1 ))cos(37rt\/m2 + n?)
n=1m=1
(69)
[Homer et al. (2017)]. Eqn. (69) was used to plot the solution to the problem at

three different time steps over ¢.,4 = 0.25s (Fig. 10).
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(a) t =0s (b) t =0.125s (c) t =0.25s

Figure 10: Analytical solution to the wave equation at 3 time steps for given initial and boundary
conditions.

Michael, Tugores-Bonilla, Zeng, Moore, Boissier 32



RBFs for PDEs Department of Mechanical Engineering

4.3.1 Explicit Time Scheme

Using the time discretisation scheme outlined in Section 3.1 a numerical solution
was evaluated. This was compared to the previously obtained analytical solution
using the L, norm. This simulation was ran multiple times using a square grid with
equal node spacing. This was done with values of Az = 0.1m and Ax = 0.05m for
a range of time steps At, as shown in Fig. 11. As expected, for large time step, the
explicit scheme is unstable which leads to high error. The error increases despite
decreasing values of At until stability is attained. Stability is reached at a larger
value of At for a node spacing Az = 0.1m than for Ax = 0.05m. This is due to
the inverse relationship that nodal spacing has with stability. However, once the
solutions converge, the finer mesh yields more accurate results.

e —%— Ax=0.1m
2.5 - v = =% = Ax=0.05m

 log(tena/A)

Figure 11: Plot of the logarithm of the L., norm against time step At, for two spatial mesh sizes Ax
given by an explicit scheme.

4.3.2 Implicit Time Scheme

A different approach to obtain a numerical solution is to implement time as an-
other dimension in the RBF, and solve the three dimensional problem using Kansa'’s
method detailed in Section 2.2.1. This can however come at an increased compu-
tational cost as the number of nodes is raised to an extra power. To improve the
condition number of the matrices, the RBF-FD method is used rather than a global
RBF system. The selection criteria for local stencils was a radial based approach
in which nodes within a radius of 0.5m were selected. Since the time dimension is
implemented in the RBF, time was considered to be a spatial dimension for this
selection process. Contrary to the explicit scheme, the error starts decreasing with
At until it converges. The more accurate results are also obtained by using a finer
mesh. It can be noticed that at very low values of At, the norm increases again. As
the mesh is refined, the matrix becomes ill-conditioned, increasing computational
errors.
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Figure 12: Plot of the logarithm of the L, norm against time step At, for two spatial mesh sizes Ax
given by an implicit scheme.

4.4 Function Reconstruction
4.4.1 3D Surface Reconstruction

RBF interpolation, HRBF implicits and Poisson Surface Reconstruction are imple-
mented to reconstruct a sphere using 6 points. Evenly distributed 3D sample grid
points, N are set the same for each algorithm for comparison. To compute the er-
rors between all the algorithms and the analytical solutions a sphere is constructed
by the following equation:

(. —x0)” + (y —w0)* + (2 — 20)° =17 (70)

where g, y,, 2, is the origin of the sphere and r is its radius.

The Ly norm (Eqn. (65)) is calculated between the sphere surface and the
analytical sphere surface coordinates, so that the error is: € = %, where N is
the number of sample grid points. Along with the Euclidean distance error, the
time consumed for each algorithm at different sample grids numbers is recorded to

demonstrate their computational performance.

Fig. 13 shows RBF interpolation and the HRBF method perform very similarly
at sample points of N = 400, though HRBF generates less error around the body.
Poisson reconstruction produces more accurate results since fewer error spots exist
around the sphere.

(a) (b) (c) (d)

Figure 13: (a) Ground Truth. Ground truth sphere plotted on top of spheres reconstructed using: (b)
RBF implicits Reconstruction, (¢) Poisson Reconstruction and (d) HRBF implicits Reconstruction
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Fig. 14a shows how the the error varies when sample points increase. The
RBF implicits interpolation solver has not shown variation of error when using
more sample points. However, the Poisson solver shows an increase of error when
sample points used are greater than N = 153. Error decreases when using more
sample points with applying the HRBF method. Experiments using more points
are not examined for HRBF and the Poisson method since Fig. 14b has shown that
significant computing power consumption occurs when using N = 303 points. The
RBF implicit interpolation method is computationally economic but less accurate
and smooth.

0 . T T 10 . . .
HREF
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—6— Poisson s wt

log{Computing time,s
A

6 8 10 12 14 16 18 6 8 10 12 14 16 18
log(total sample points) log(total sample points)
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Figure 14: (a) log(e) vs. log(total sample points), (b) log(computing time) vs. log(total sample points)

4.4.2 2D Boundary Reconstruction

Another application using image reconstruction methods is to reconstruct 2D bound-
aries. The boundary can be reconstructed using very few points, and reconstruction
also removes the majority of the noise. However, since the sample points are ran-
domly selected, there can be a disadvantage of missing details.

As shown in Fig. 15, a terrain map is segmented using the Canny technique
mentioned in Section 3.2. 80 points are randomly selected from the highest-gradient-
change pixels, which most likely lie on the edge of the lake. High intensity noise
has a high gradient change too, and is removed in the Hysteresis Thresholding
stage. A distance constraint is applied when selecting the random points so that
only points that are greater than certain distances between each adjacent pair can
be selected. Points selected have a certain distance between them, so that they
are more uniformly distributed in the grid. This prevents the selected points from
being clustered and from a result bias, from higher weighting in a particular area.

Additionally, the Poisson Surface Reconstruction technique requires interpolat-
ing the divergence of the vector field globally. Hence, the sample grid needed to be
wide enough to cover the data points. In other words, the data points can not be
placed on the boundaries of the sample grid. In practice, the sample grids are set
twice as wide as the data point range for all algorithms.
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(a) (b)

Figure 15: (a) Lake, (b) Edge segmentation

As shown in Fig. 15, the edge detection algorithm has performed well in terms
of filtering noise and selecting essential data points. Based on the same data points,
the reconstruction of the lake by the three techniques is illustrated in Fig. 16. All
algorithms have reconstructed a connected outline of the lake. RBF interpolation
shows the greatest detail, by having the sharpest edges. Poisson reconstruction
tends to soften the edges using the same number of points. The HRBF implicits
method keeps details of the outline but removes sharp corners [Macédo et al. (2011)].

P~
J.‘ \\
( \\
v
L/
(a) (b) (c) (d)

Figure 16: (a) Ground Truth, (b) RBF implicit Reconstruction, (c¢) Poisson Reconstruction and (d)
HRBF implicit Reconstruction

An experiment using a different number of input data points is done by employ-
ing the HRBF based solver. As stated previously, a distance restriction is applied to
the input points avoiding points that are too close. Fig. 17 depicts how the shape
morphs with different amounts of input data points. The sequence of reconstruc-
tion varies from a rough circular shape to a more detailed outline of the original
image. Regardless if more points are added as shown in Fig. 17f, the shape does no
longer give further details of the lake. That is because the distance restriction has
limited the minimum Euclidean distance between points. The distance restriction
also limits the maximum number of points that can be selected at one time. In
theory, the smaller the distance restriction, the more details can be obtained, but
possibly bringing a higher degree of bias too. Another key result proving that the
HRBF method can also handle coarse and non-uniform data robustly is shown in
Fig. 17a.
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(e) n =178 ) n = 100

Figure 17: 2D Boundary Reconstruction using different sets of sample points

4.5 Non linear PDEs: Burgers’ Equation
4.5.1 Non linear least squares methods

The Gauss-Newton and the Levenberg-Marquadt method have been used for the so-
lution of the Burgers’ equation. The two methods have been assessed and compared
for their level of accuracy and convergence, using the local RBF-FD collocation
method.

For both 1D and 2D, the Gauss-Newton algorithm has shown a superior per-
formance compared to the Levenberg-Marquadt algorithm. Using the same spatial
and temporal parameters and stopping criteria, the maximum absolute error was
notably smaller using a Gauss-Newton algorithm. The maximum absolute errors
obtained from both methods are given in Tab. 1. It can be seen that the Gauss-

Table 1: Comparison of the L, norm for the Gauss-Newton and Levenberg-Marquadt methods.

Maximum absolute error (L) | Gauss-Newton | Levenberg-Marquadt
1-D 2.124 x 10~* 9.0717 x 10~*
2-D
Loo(tdy — uy) 1.5x 1073 1.7 x 1073
Leoo(tiy — u,) 2.5 x 1073 2.7 x 1073

Newton algorithm provides better results in both 1D and 2D equations, although
the difference in error between the two errors becomes remarkably lower for the
two-dimensional case. Moreover, the G-N method also showed a faster convergence
than Levenberg-Marquadt in all cases. For a stopping criteria set at || f,(2)||s or
|gim (2)]]oe < 1077, respectively and for the 1D case, the Gauss-Newton method was
observed to converge at the 2nd iteration whilst the Levenberg-Marquadt algorithm
converged at the 13th iteration. The convergence of both algorithms, including the
damping parameter p of the L-M method is presented in Fig. 18.

The Levenberg-Marquadt method takes longer to converge and this is due to the
trust-region strategy where the norm of the step is limited. As mentioned in Section
3.3, very large steps are restricted. The damping parater p, which controls the
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Figure 18: Convergence of non linear least squares methods for the 1D Burgers’ equation.

trust region size, geometrically adds a paraboloid centered at the descent direction
him = 0, which results in a smaller step. Furthermore, an increase of the damping
parameter results, in essence, to a step direction closer to the steepest descent
method, which has slower convergence and generally results in poorer performances.
For problems, like the ones considered in this research, where the value of the gain
ratio g, described in Eqn. 42, which controls the size of the damping parameter p,
is large and positive, the pure Gauss-Newton method is already good enough for
the solution of the non linear PDE.

Therefore, due to a smaller error and a faster convergence, the Gauss-Newton
method was observed to provide better results than the L-M algorithm. For this
reason, the Gauss-Newton method is the non linear least squares method that has
been used in all implicit schemes for the 1D and 2D Burgers’ equation.

4.5.2 1D Burgers’ Equation

The 1D Burgers’ equation is solved numerically using the schemes described in
Section 3.4. The equation is solved in the domain = € (0,1) with a spatial dis-
cretisation of Az = 0.1, hence N = 11 points are used. Moreover, k = 3 is used
for the explicit local scheme domain of influence (Section 3.4.2) and is the num-
ber of neighbours used for both the RBF-FD schemes (Sections 3.4.3, 3.4.5). The
Reynolds number used is Re = 100 and the solution is provided at t.,q = 1. These
parameters are used to provide consistent convergence studies for all five schemes
and, furthermore, they are in accordance with data given on the numerical solution
of the 1D Burgers’ equation by Ali et al. (2011) and Khater et al. (2008), who used
a meshless method of lines (MOL-RBF) and the Chebyshev spectral collocation
(ChSC) method respectively.

Convergence studies for all schemes are shown in Fig. 19, where the L., (Eqn.
(65)) is used to quantify the accuracy of the results. In the convergence studies, the
time discretisation is altered rather than the spatial discretisation, since more nodes
in the spacial domain would lead to an ill-conditioned system to be solved in the
case of global RBF based methods where the whole matrix is populated. The time
step At is varied between 0.25 and 223 = (0.00024. The plots depict the number of

1024

iterations as an increase in a normalised time variable (tXtd). The specific solutions

for which the absolute error is at a minimum are given in Tab. 2 along with the
time step at which this occurs.
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A thorough analysis of the graphs shows that the global explicit scheme (Fig.
19a) as well as the implicit schemes (Figs. 19¢, 19¢) show an error increase in the
numerical results as the time step is increased. This is because all three schemes
have a large condition number (Tab. 2) of either the discretisation matrix or the
Jacobian, used to solve a linear system at every time iteration, or iteration of the
Gauss-Newton method. The condition numbers provided are the largest ones ob-
served from all iterations (for the implicit schemes) and at the time step (At) noted
on Tab. 2. Large condition numbers lead to errors which accumulate from every
time step. An increase in error following a decrease in time step when numeri-
cally solving the 1D Burgers’ equation was also documented by Ali et al. (2011).
Conversely, the explicit local RBF (EL-RBF), and explicit RBF-FD (ERBF-FD)
schemes (Figs. 19b, 19d), result in well conditioned matrices which arise from the
local nature of the schemes discussed in Section 3.4.

A decrease in error, noted in the the EL-RBF, ERBF-FD schemes is expected
for an explicit Euler scheme which is first order in time (7 = O(At)), and the
truncation error is expected to decrease following an increase in At. The final
existing error is also a result of the first order explicit scheme in time. Accuracy
can be increased by creating a scheme that is of higher order in time.
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Figure 19: Convergence studies for the 1D Burgers’ equation solved using (a) Global RBF discretisation
in space and explicit Euler in time (EG-RBF), (b) Local RBF discretisation in space and explicit Euler
in time (EL-RBF), (c) Implicit Euler discetisation in time (IG-RBF), (d) Explicit Euler in time and
RBF-FD in space (ERBF-FD), (e) Implicit Euler in time and RBF-FD in space (IRBF-FD). t.,,q = 0.25
is the total running time of the simulation and At, the time step. The spatial discretisation used is
Az =0.1.

Table 2: Lowest error norms from numerical results of all the discretisation schemes along with the
condition number of the discretisation matrix A, ;A for the explicit schemes and JTJ for the implicit
schemes. t.,q = 0.25, Re = 100 and N = 11.

EG-RBF EL-RBF ERBF-FD IG-RBF IRBF-FD
(Sec. 3.4.1) (Sec. 3.4.2) (Sec. 3.4.3) (Sec. 3.4.4) (Sec. 3.4.5)

310) T e & & .
L 7.27° 6.7x107° 73x107° 7.7x107% 95x107°
R(A),w(JTT) 216 x 10°  9.98 x 10>  9.98 x 10>  3.98 x 10'®  3.43 x 108
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All schemes give similarly accurate results since the L., errors are within 30% of
each other. The lowest error is given by the explicit local RBF scheme (EL-RBF)
which uses Kansa’s method to locally discretise the spatial derivatives along with
an explicit time discretisation. The local scheme creates a well conditioned system
which is solved at every iteration. It does not create large errors which accumulate
and results are slightly better in comparison to other schemes. The explicit local
RBF scheme (EL-RBF) is compared to other studies. Tab. 3, includes error norms
(Lo ) at different times (f,q) and compares the results from the EL-RBF scheme to
a Chebyshev spectral collocation (ChSC) method taken from Khater et al. (2008)
and a method of lines with multiquadrics (MOL-MQ) scheme used by Ali et al.
(2011). Tab. 3 shows that the EL-RBF method gives accurate results at low Re
numbers but at higher ¢.,4. It is suggested that this might be because the system
is well-conditioned and there are no large error accumulations.

Table 3: Error norms (L) for different times and at different Reynolds numbers for three different
numerical schemes, all using N = 11 and At = 0.01. Comparison results are using the ChSC scheme

[Khater et al. (2008)] and MOL-MQ scheme [Ali et al. (2011)].

Results from this present work are in

bold.
tend = 0.1 tend = 0.25
Re EL-RBF MOL-MQ ChSC EL-RBF MOL-MQ
100 | 3.30 x 10~°® 3.07x107° 3.06x107° | 6.60 x 10~° 7.65x10™° 7.62 x 10~°
1000 | 6.01 x 10~7 3.06 x 1077 3.06x 1077 | 1.13 x 10~% 7.66 x 10~7 7.82x 1077
10000 | 1.71 x 10~7 1.71x107% 2.24x 1078 | 8.26 x 10~7 4.89x 10~% 8.94 x 108

An example of the solution, which follows the tanh function (Eqn. (46)), is
shown in Fig. 20. A larger final time is used to show the propagation of velocity in
the domain (from left to right).
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Figure 20: Numerical Solution of the 1D Burgers’ equation at different time steps using the Implicit
Global RBF scheme (IG-RBF, Section 3.4.1) plotted with the final analytical solution of the equation.
Parameters used are Re = 1000, Az = 0.05, At = 0.05 and t.,q = 4.

4.5.3 2D Burgers’ Equation

In the case of the 2D Burgers’ equation solution, to accurately represent the domain,
the domain size chosen in each direction is N, = N, = 21 and a total of N = 441
points overall. The domain also being = € (0,1),y € (0,1) and hence the spacial
discretisation is Ax = 0.05, Ay = 0.05. The local domain of influence for the
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local RBF scheme (Section 3.4.2) and the number of neighbours for the RBF-FD
schemes (Sections 3.4.3, 3.4.5) is k = 5. The flow Reynolds number used for the
convergence studies for all schemes is Re = 60 as the explicit schemes become
unstable at Re > 100, where the solution becomes convection dominated [Zhang
(2009)]. Nevertheless, the most accurate scheme is then compared to analytical
results and the numerical results given by Sarler et al. (2012) and Bahadir (2003)
where a higher Reynolds number is used (Re = 100). The total time is set to
tend = 2 as in the aforementioned studies.
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Figure 21: Convergence studies for the 2D Burgers’ equation solved using (a) Global RBF discretisation
in space and explicit Euler in time (EG-RBF), (b) Local RBF discretisation in space and explicit Euler
in time (EL-RBF), (c¢) Implicit Euler discetisation in time (IG-RBF), (d) Explicit Euler in time and
RBF-FD in space (ERBF-FD), (e) Implicit Euler in time and RBF-FD in space (IRBF-FD). tcnq = 2 is
the total running time of the simulation and At, the time step. The error norm (L) is calculated using
the velocity in the x direction, u,. The spatial discretisation used is Az = 0.05.

Fig. 21 depicts the convergence studies of the infinity norm with a normalised
measure for time, which is the total number of iterations in time. The number
of iterations used lies from 100, where a solution is provided by all schemes, up
to 20,000 iterations where all schemes converge. The explicit time schemes (Figs.
21a, 21b, 21d) provide results that converge at tzltd = 20000, At = 0.0001 and the
schemes that are implicit in time (Figs. 21c, 21d) converge at tzltd = 1000, At =

0.002.

Results from implicit schemes start becoming less accurate at a certain time
step and the maximum error, L., starts to increase. For this reason, the most
accurate result is obtained at a larger time step, in contrast to explicit schemes.
The reasons for this lie in the underlying coding and solution procedure for the
different methods. The explicit schemes all iterate in time using information from
previous time steps (Eqn. 50), hence this requires just one linear system to be
solved at every time iteration (Sections 3.4.1, 3.4.2,3.4.3) . The linear system for
the EG-RBF, IG-RBF and IRBF-FD schemes are solved using gmres in MATLAB,
since the matrices used to solve the linear systems (A, JJT) have high condition
numbers (=~ 10'®). The solver is used at a desired tolerance of 7 = 1075, hence
there is an underlying error that accumulates. Accumulation is more apparent in
the implicit schemes at higher iterations since the linear system (Eqn. 39) is solved
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for a k.., number of iterations at every time step, until it converges to a solution
of the velocity for the next time step (up™, up™"). Additionally, another error that
accumulates every time step from the implicit solvers is || f||.,, < 107°. This error
results from solving the non linear least squares problem at every iteration and the
final result will be comparatively less accurate as simulation time increases.

Table 4: Lowest error norms from numerical results of all the discretisation schemes where t.,q = 2, Re =
60 and N = 441.

EG-RBF EL-RBF ERBF-FD IG-RBF IRBF-FD
(Sec. 3.4.1) (Sec. 3.4.2) (Sec. 3.4.3) (Sec. 3.4.4) (Sec. 3.4.5)

At(s) 0.0001 0.0001 0.0001 0.002 0.002
Lo(o—ug) 9.0x1072 1.9x10"2 11x1072 15x10~* 1.0x 1073
Loo(@—u,) 90x1072 14x10°2 63x10~% 1.6x10~% 9.8x10~*

The most accurate solutions from all the schemes are provided in Tab. 4. The
performance of the explicit global (EG-RBF) scheme is the poorest, which can
be attributed to the large condition number of the matrix (k(A) = 3.3 x 10'7),
used to find the coefficients (\) for the next iteration, compared to the condition
numbers of the local explicit (EL-RBF) and explicit RBF-FD (ERBF-FD) schemes
which are designed to use well-conditioned matrices. In Sarler et al. (2012), it is
noted that the 2D coupled Burgers’ equations become convection dominated at high
Reynolds numbers (where viscosity is very low), and a sharp front appears in the
solution of the equations. The discontinuity causes instabilities which grow in time.
This is solved by Sarler et al. (2012), using the LRBFCM method to discretise the
equations in space with an upwinding technique and by Bahadir (2003) through
an implicit scheme in both space and time. In this research, implicit time schemes
are used along with the Kansa RBF and RBF-FD spacial discretisations to solve
for high Re number flows. The inaccuracy of the explicit schemes due to a sharp
front is noticeable even at Re = 60, but the implicit schemes show stable results
due to their inherent stability. Between these, the RBF-FD gives more accurate
results than its global RBF counterpart(at higher Re numbers), and it also has a
much lower running time since operations are less computationally expensive, and
higher accuracy could be achieved by increasing the number of neighbours used in
the weight generation (Section 2.2.2).

In order to prove the fact that spurious oscillations occur at higher Reynolds
numbers with the explicit schemes, the numerical result for u, using the global ex-
plicit scheme (EG-RBF) at t.,q = 2 is shown in Fig. 22a. The unstable oscillations
come from the convection dominated equation and the fact that the explicit scheme
blindly solves for the next time step using only past information. In contrast, the
implicit RBF-FD scheme is used to provide numerical results using the same time
step, spacial discretisation and final time. The result is shown in Fig. 22b, where
no oscillations exist.

Finally, a comparison between the implicit schemes used in this study and the
methods used to discretise time and space by Bahadir (2003) and Sarler et al. (2012)
is given in Tab. 5 for u, and Tab. 6 for u,. Tables 5, 6 show that the implicit scheme
with RBF-FD used in this study gives comparative results to the other studies with
very similar errors. The reason for this could be the fact that the discretisation is
of first order in time in all three studies, O(At). The difference between them is
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Figure 22: Numerical solutions u, at Re = 100, N = 441, t.,q = 2 and At = 0.002. (a) Solution using
the explicit global RBF scheme (EG-RBF), (b) Solution using the implicit RBF-FD scheme (IRBF-FD).

the discretisation in space, with Sarler et al. (2012) discretising the spatial deriva-
tives using a local Kansa RBF scheme (LRBFCM), Bahadir (2003) using a centred
scheme and RBF-FD used in this study. For Bahadir (2003), the discretisation is
second order accurate in space, O(Ax?). RBF discretisations are shown to perform
well even compared to higher order schemes, hence the slightly more accurate re-
sults from the schemes that use RBFs to discretise the spatial derivatives [Fornberg
& Flyer (2015)]. A contrasting result to this statement is that the IG-RBF scheme
gives the least accurate results. The reason lies in computational errors;, which arise
due to the very high condition numbers of the matrices used in the global scheme
(k(JTJ) = 4.6 x 10?), where the discretisation matrix is densely populated. More-
over, the time discretisation used is lower than the optimal value for the global RBF
scheme (Tab. 4). Finally, a higher accuracy could be achieved by increasing the
number of points in the RBF-FD stencil (k > 5) before the results are affected by
ill-conditioned matrices, leading to more accurate results than the other schemes
presented here.

Table 5: Numerical results and L., for u, from the exact solutions and various schemes including IG-
RBF and IRBF-FD from this work (in bold), LRBFCM and the fully implicit FD method from Sarler
et al. (2012) and Bahadir (2003) respectively. Solutions given at typical mesh points with te,q = 2,
Re =100, At =0.0001, N = 441.

Uy L
(z,y) (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)
Analytical 0.50048 0.50048 0.50048 0.55568 0.74426 0.55568 0
IG-RBF 0.49998 0.50319 0.50391 0.55728 0.74791 0.55894 0.0037
IRBF-FD 0.50045 0.50037 0.50029 0.55450 0.74413 0.55407 0.0016
Sarler et al. (2012) 0.50047 0.50044 0.50041 0.55481 0.74420 0.55568 0.0012
Bahadir (2003) 0.49983 0.49977 0.49973 0.55429 0.74340 0.55413 0.0016

Fig. 23 shows the results for the velocity components of the 2D Burgers’ equation
(uy and uy).
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Table 6: Numerical results and Lo, for u, from the exact solutions and various schemes including IG-
RBF and IRBF-FD from this work (in bold), LRBFCM and the fully implicit FD method from Sarler
et al. (2012) and Bahadir (2003) respectively. Solutions given at typical mesh points with te,q = 2,
Re =100, At = 0.0001, N = 441.

Uy L
(z,y) (0.1,0.1) (0.3,0.3) (0.5,0.5) (0.3,0.7) (0.1,0.9) (0.5,0.9)
Analytical 0.99952 0.99952 0.99952 0.94433 0.75574 0.94433 0
IG-RBF 0.99965 0.99702 0.99626 0.94276 0.75210 0.94113 0.0036

IRBF-FD 0.99949 0.99941 0.99934 0.94512 0.75578 0.94541 0.0011
Sarler et al. (2012) 0.99953 0.99956 0.99959 0.94520 0.75580 0.94551 0.0012
Bahadir (2003)  0.99826 0.99861 0.99821 0.94409 0.75500 0.94441 0.0014

(a) (b)

Figure 23: Numerical solutions for the 2D Burgers’ equation, (a) u, (b) u, using IRBF-FD at tenq = 2,
Re =100, with N = 441, At = 0.0001.

5 Conclusions

Radial basis function based methods for the solution of partial differential equations
provided accurate and computationally efficient results for all the applications con-
sidered. They have proven to be a valuable tool for interpolation and subsequently
the discretisation of PDEs. Higher computational efficiency was achieved by locally
supported RBF methods, such as RBF-FD and LRBFCM, as they mitigate densely
populated matrices which result from the use of the global Kansa method. A nu-
merical solution was given to linear PDEs, the Poisson, heat and wave equation;
surface and boundary reconstruction applications and finally, the Burger’s equation.

The Poisson Equation was solved using both Kansa and RBF-FD methods and
compared to an analytical solution. Both gave accurate results. Kansa’s method
was tested with both a regularly spaced grid and randomly scattered points, where
the accuracy of the results in both cases demonstrated the flexibility of RBF based
methodologies regarding the geometry. It was found for both the heat and wave
equation, an explicit time scheme gave accurate results provided a sufficiently small
time step. An implicit time scheme was also implemented, which was more accurate
for large time steps however had issues with the conditioning of the matrix and was
generally more temperamental to implement.

The 3D Surface reconstruction of a sphere gave more accurate and smoother
results when using the HRBF and Kansa’s method through the Poisson recon-
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struction methodology in comparison with an implicit RBF interpolation solver, at
the expense of a higher computational cost. This is expected due to the globally
supported RBFs used for both methods. Moreover, for the 2D boundary recon-
struction case, edge detection algorithms successfully filtered noise and selected
essential data points. In this case, RBF implicit interpolation shows results with
more details whilst Poisson reconstruction tends to soften the edges and HRBF
keeps the details but removes the sharp corners. It was also found that HRBF can
handle coarse and non-uniform data robustly.

Additionally, RBF based methods have proven to adequately deal with the de-
manding field of non lincar PDEs. The solutions were compared to analytical so-
lutions and results from alternative methods provided by previous literature. The
methods developed in this work performed either comparably or better than other
methodologies. Revolutionary work has been done by developing an implicit time
scheme to discretise the time derivatives of the Burgers’ equations, in combina-
tion with both a global Kansa and an RBF-FD scheme for the spatial derivatives.
The inherently stable implicit scheme was able to successfully solve stability issues
caused by the sharp front of the 2D Burger’s equation. For the schemes including
an implicit discretisation, non linear least squares methods were used to approxi-
mate the solution and it was found that Gauss-Newton algorithms provided more
accurate results and a faster performance than the Lenvenberg-Marquadt method.
The IRBF-FD scheme provided promising results to the 2D Burgers’ equation.

Overall, radial basis functions have proven to be a versatile tool for function
interpolation, discretisation of PDEs and surface reconstruction, demonstrating
high flexibility regarding the geometry. The different RBF collocation methods
are relatively easy to implement for higher spatial dimensions and showed high
order accuracy, compared to other existing methodologies. However, large condi-
tion numbers have shown to be an issue for globally supported collocation methods
and stability issues require further investigation. Further work could be considered
especially on the local support RBF based collocation methods, and particularly
the RBF-FD method, which has demonstrated to be more computationally efficient
and more accurate in some cases, whilst avoiding large conditioning numbers. This
can include further studies on the appropriate stencil size for high order accurate
results without compromising computational time, testing an optimal shape factor
c for each case specifically and a comparison of different basic functions, such as
the Gaussian or thin plate splines. This work could also be further improved by
increasing the spatial and temporal resolution of the numerical approximations, as
well as considering higher order time schemes for an even more accurate solution
to PDEs.

Therefore, RBF discretisations offer a promising tool for the solution of com-
plex geometries in the field of geosciences, computational fluid dynamics or biology,
providing a flexible and high order accurate approach to the solution of PDEs.
Generation of fine meshes tends to be extremely computationally expensive and
the accuracy of the results is usually highly dependent on it, however RBF col-
location methods successfully avoid these issues. The use of the local RBF-FD
method offers opportunities for adaptive refinement and scalability to large-scale
parallel computing, particularly important for Computational Fluid Dynamics and
the solution of the Navier-Stokes equation, where previous literature has only devel-
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oped solvers for very simple geometries (Demirkaya et al. (2008)). Moreover, RBF
based methods also provide accurate solutions for function reconstruction, where
the method is of particular interest when applied to medical or blurred images.
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